Skip to main content

Windows 2003 SP1 has a "real" NTP service

It appears Microsoft has finally gotten around to making the Windows Time service into a "real" implementation of the network time protocol in Windows 2003 SP1 and later. The half-baked Simple NTP system of earlier Windows versions kept poor time (it would often drift by as much as a full second) and had troublesome interoperability characteristics, reporting the incorrect stratum amongst other issues.

My week-long tests indicate the updated service keeps time to within about 15 ms of a "real" NTP server configured with the same set of Stratum-1 sources. This is about the resolution of the Windows system interrupt timer (1/64 second). The updated service also seems to report the correct stratum, which server it has selected for synchronization, and a seemingly correct resolution value of 2^(-6) seconds. Here is a chart showing the performance relative to a server running ntpd.

Of course, diagnostics are still terrible in this updated version, so my only recourse is to monitor the new Windows Time Service with the tools available on a system running the standard ntpd.

Comments

Popular posts from this blog

Fixing slow NFS performance between VMware and Windows 2008 R2

I've seen hundreds of reports of slow NFS performance between VMware ESX/ESXi and Windows Server 2008 (with or without R2) out there on the internet, mixed in with a few reports of it performing fabulously.
We use the storage on our big Windows file servers periodically for one-off dev/test VMware virutal machines, and have  been struggling with this quite a bit recently. It used to be fast. Now it was very slow, like less than 3 MB/s for a copy of a VMDK. It made no sense.
We chased a lot of ideas. Started with the Windows and WMware logs of course, but nothing significant showed up. The Windows Server performance counters showed low CPU utilization and queue depth, low disk queue depth, less than 1 ms average IO service time, and a paltry 30 Mbps network utilization on bonded GbE links.
So where was the bottleneck? I ran across this Microsoft article about slow NFS performance when user name mapping wasn't set up, but it only seemed to apply to Windows 2003. Surely the patch me…

Google's public NTP servers?

I was struggling with finding a good set of low-ping NTP servers for use as upstream sources in the office. Using pool.ntp.org is great and all, but the rotating DNS entries aren't fabulous for Windows NTP clients (or really any NTP software except the reference ntpd implementation).

ntpd resolves a server hostname to an IP once at startup, and then sticks with that IP forever. Most other NTP clients honor DNS TTLs, and will follow the rotation of addresses returned by pool.ntp.org. This means Windows NTP client using the built-in Windows Time Service will actually be trying to sync to a moving set of target servers when pointed at a pool.ntp.org source. Fine for most client, but not great for servers trying to maintain stable timing for security and logging purposes.

I stumbled across this link referencing Google's ntp servers at hostname time[1-4].google.com. These servers support IPv4 and IPv6, and seem to be anycast just like Google's public DNS servers at 8.8.8.8. time…

Presets versus quality in x264 encoding

I'm scoping a project that will require re-encoding a large training video library into HTML5 and Flash-compatible formats. As of today, this means using H.264-based video for best compatability and quality (although WebM might become an option in a year or two).
The open source x264 is widely considered the state of the art in H.264 encoders. Given the large amount of source video we need to convert as part of the project, finding the optimal trade-off between encoding speed and quality with x264-based encoders (x264 itself, FFmpeg, MEencoder, HandBrake, etc.) is important.
So I created a 720p video comprised of several popular video test sequences concatenated together. All of these sequences are from lossless original sources, so we are not re-compressing the artifacts of another video codec. The sequences are designed to torture video codecs: scenes include splashing water, flames, slow pans, detailed backgrounds and fast motion. I did several two-pass 2500 kbps encodings using …